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Introduction

Denis Mollison

Infectious diseases have played a major role in evolution, of which their influ-
ence on human history is just the most recent and best documented example
(McNeill 1976, Crosby 1986). The spectacular success of humans in dominat-
ing the world’s ecology has meant that they — and their domestic animals
and crops — provide an unprecedentedly rich resource for parasites. Not
surprisingly, parasites have evolved, and continue to evolve, to exploit this
resource. Meanwhile the earth’s remaining natural ecosystems, often weak-
ened by human influence, are in relative terms even more threatened by the
spread of infectious diseases.

Until fairly recently it was possible to look back on over 100 years of
fairly steady progress in the control of disease — including the introduction
of antibiotics, and vaccination programmes leading to great reductions of
the main ‘childhood diseases’ in developed countries, and to the worldwide
eradication of smallpox — and to extrapolate to a future in which infectious
disease had been conquered. The rise of AIDS and of vaccine-resistant strains
of a number of the diseases thought to be no longer a threat has demonstrated
that such simple optimism is unjustified. The war against disease i1s going
to be a long one, in which lasting success can only be won through better
understanding.

Epidemics involve processes at all scales, from the global population,
through the individual level, right down to the behaviour of the immune sys-
tem. The resulting dynamical systems are characteristically highly nonlinear,
stochastic and subject to natural selection. The corresponding mathematical
problems concern both the structure of models that are needed to describe this
dynamical diversity, and also the modelling and statistical methods required
to deal with heterogeneity, in space, time, social contact and so on. A third,
vital and complementary area of work is the adaptation of developments in
these areas to particular applied problems.

Much current work is driven by the great concern centred on the AIDS
epidemic. This has raised many stimulating technical questions: AIDS is
particularly difficult to model because of the complex heterogeneity of the
relevant contact structures, and difficulties in collecting and analysing data
which are enhanced by its long incubation period and by the social sensitivity
associated with sexually transmitted diseases. Nevertheless, similar problems
arise for all diseases, and any solutions or improvements in methodology will
be of wider applicability.

As well as AIDS, the areas of application include: epidemics of other sex-
ually transmitted diseases; childhood diseases like measles or polio and the
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question of appropriate vaccination policies; strategies for disease control in
animals; the problems involved in the spatial spread of disease (e.g. rabies);
and so on.

Improved computer technology has provided better data bases, and opened
up new possibilities for the use of computationally-intensive methods in the
analysis of data. It has also allowed the simulation of more realistic mod-
els; however this increases the need to improve our understanding of how a
relatively few key components can drive the dynamics of such models.

1  The conceptual framework

The present volume opens with a review by Dietz of some of the basic con-
cepts and problems of epidemic modelling; and of a wide range of questions
related to vaccination strategies which should in principle be amenable to
mathematical analysis.

This is followed by a chapter on the structure of epidemic models. We
cannot begin to make use of models until we understand how their dynamics
depend on basic components, and how sensitive they are to the way in which
they are incorporated into the model; this is especially important where we
extrapolate on the basis of a model, for instance for prediction and control.

Stochastic epidemic models, although generally more realistic than deter-
ministic ones, have often been seen as too complex for analysis because of the
level of detail they require, for instance relating to the probability that an
individual with the disease will infect a particular subset of the population.
However, in recent years it has been realised that this micro-structure can
be turned to considerable advantage, especially when comparing one model
with another, by the simple and elegant technique of coupling. Ball reviews
this technique in the epidemic context, while Leféevre and Picard use similar
stochastic methods to generalise the classic Reed-Frost model for an epidemic
in a closed population.

Nasell discusses how the concept of an epidemic threshold should be ex-
tended to stochastic models, where the question of whether an outbreak can
be regarded as ‘large’ is not as clearcut as in the simplified deterministic case.
De Jong, Diekmann and Heesterbeek consider the transmission rate of infec-
tion, arguing from both theory and data in favour of the ‘true mass-action’
assumption, namely that the rate should rise with population density but not
depend on the overall population size.

Part 1 concludes with a wide-ranging survey by Diekmann, Heesterbeek
and Metz of the various possible types of disease dynamics, with special em-
phasis on the influence of heterogeneity and on how the appropriate modelling
approach depends on the population and time scales of interest.
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2 Spatial models

Recent developments in spatial stochastic processes and differential equa-
tions have applications to animal and plant diseases, where key questions
concern long-distance contacts, endemic patterns, and the effectiveness of
control zones.

Cliff reviews mapping methods for identifying the spatial corridors used
by diseases, and the importance of different components in their spread. This
is illustrated by analysis of the spread of measles and influenza over a wide
range of population densities and spatial scales. Metz and van den Bosch
present a very general framework in which the velocity of spread of epidemics
and populations can be calculated from information at the individual level,
and illustrate this with applications to a wide variety of cases, mainly of plant
and animal diseases.

The breadth of applicability of Metz’s approach is achieved at the expense
of some loss of accuracy, particularly in neglecting stochastic effects. Durrett
shows how significant progress is now being made in analysing the more ac-
curate but relatively intractable stochastic models for the spatial spread of
epidemics.

This part concludes with two more specialised papers. Daniels shows, for
nonlinear deterministic models, how an elegant perturbation approach can
be used to calculate the detailed shape of epidemic wavefronts. Billard et al.
generalise classical logistic models for the rate of increase of infected tissue
in epidemic plant diseases, so as to incorporate randomness and additional
infections from the surrounding environment, and show how they can be fitted
to experimental data on the spread of anthracnose in Stylosanthes scabra.

3 Nonlinear time and space-time dynamics

Data on recurrent epidemics of human ‘childhood’ diseases, especially measles,
have played a key part in discussions of the role of nonlinearity and chaos in
biological population dynamics. Ellner et al. review methods for the detec-
tion of nonlinearity and chaos, and apply them to a collection of data sets for
four different diseases. Their broad conclusion is that evidence for chaos is
generally lacking in these data sets, though measles may be close to it.

Grenfell et al. look at measles modelling in more detail: seasonal forcing
has a destabilising effect on the dynamics, while the introduction of a realistic
age structure to the model promotes stability. They also discuss the more
problematic effects of spatial heterogeneity and of variations in the birth rate,
in the light of data from a number of major cities of the developed world.
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4 Heterogeneity in human diseases

It is vital for successful modelling to take appropriate account of both pop-
ulation heterogeneily, i.e. variations between individuals in parameters such
as their contact rate or susceptibility (especially important for AIDS and
other STDs); and heterogeneity of mizing, i.e. how the pattern of contacts
depends on spatial location or on the connectivity of social networks. The de-
velopment of satisfactory models for the contact structures of human diseases
offers a challenging opportunity for collaborative research between workers
with expertise ranging from random graphs to sociology.

Here, Levin gives an elegant analysis of the general mixing problem which is
basic to the modelling of pairing in a heterogeneous population, and discusses
the dynamics of formation and dissolution of pairs. Jacquez et al. analyse
the relation between the epidemic threshold for a population composed of
differing subgroups and the threshold of the individual subgroups.

Morris offers a very different approach to the same problem area, showing
how log-linear models can provide a framework for estimation of mixing pa-
rameters from available sociological data, and for inference on the resulting
patterns of transmission. This is illustrated from sexual preference data, and
the implications for the spread of sexually transmitted diseases are discussed.

Gupta et al. consider a quite different kind of heterogeneity, in the disease
agent, showing how this can make a substantial difference to estimates of the
basic reproductive ratio in the case of malaria.

5 Data analysis: estimation and prediction

Even for relatively simple epidemic situations, statistical inference faces dif-
ficulties including identifiability problems, very complicated likelihood func-
tions, multiple sources of errors, difficulties with the interpretation of ‘pa-
rameters’, and the need to make predictions for the epidemic from which the
data are gathered. Becker reviews and illustrates methods to overcome such
difficulties, including the use of effective simplifying assumptions, addressing
estimation problems in a more specific context, and the use of martingale
methods.

For many diseases, complex models are required to aid our understanding
of the mechanics of transmission and evaluation of potential control strategies,
but the crudeness of data makes the use of relatively simple models the only
sensible approach to model fitting and projection. Cairns discusses how these
two conflicting requirements may be reconciled through the identification of a
minimal set of Primary Components, that is, functions of the basic parameters
which dictate epidemic dynamics; illustrating the technique through reference
to some simple models for the spread of AIDS.
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The World Health Organisation’s Onchocerciasis Control Programme in
West Africa provides a large scale example of the use of epidemic modelling
in disease control. Onchocerciasis (river blindness) is a complex disease — its
dynamics depend on the interaction of three populations, the parasites, the
human hosts and the vectors — which affects an estimated 18 million people,
mainly in west and central Africa. Remme et al. describe how epidemic mod-
els have been used in the planning, implementation, evaluation and timely
adjustment of control strategies.

A major problem in disease control is that vaccines may fail to confer
immunity, or may only confer partial immunity. Longini et al. review the use
of statistical methods to estimate vaccine efficiency both for single outbreaks
and endemic conditions.

Norman Bailey, noted for his pioneering work in epidemic modelling (Bai-
ley 1957, 1975), rounds off this final section of the book with a discussion of
the vital practical issues involved in integrating modelling with public health
decision-making and planning, illustrated from his recent work on the spread

and control of HIV/AIDS.

Future work

During the NATO workshop on Epidemic Models there were discussions to
identify key problem areas: the conclusions of these sessions are given as an
Appendix, under the headings ‘Model structure’, ‘Heterogeneity’ and ‘Data
analysis and prediction’. A further review, in part based on these discussions,
is given in Mollison, Isham and Grenfell (1994).

Many theoretical challenges remain, for instance to expand the scope of
epidemic modelling to deal with the co-evolution of diseases and the species
they affect (see e.g. Hamilton and Howard 1994). On the practical side, we
need to use our understanding to achieve greater success in the war against
disease. It seems ironic, when there is rightly much concern over the number
of species disappearing from the earth as an incidental consequence of human
activities, that it should be so hard to eliminate a species deliberately, with
the smallpox virus still our only complete success.
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